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This article reviews three innovations that not only have the

potential to revolutionize the way organizations identify,

develop and engage talent, but are also emerging as tools used

by practitioners and firms. Specifically, we discuss (a) machine-

learning algorithms that can evaluate digital footprints, (b)

social sensing technology that can automatically decode verbal

and nonverbal behavior to infer personality and emotional

states, and (c) gamified assessment tools that focus on

enhancing the user-experience in personnel selection. The

strengths and limitations of each of these approaches are

discussed, and practical and theoretical implications are

considered.
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Talent management, the division of Human Resources

(HR) focused on identifying, developing, and engaging

employees to increase organizational effectiveness, is the

key human capital challenge of the 21st century [1].

Psychological assessments are a core foundation of effec-

tive talent management practices: if you cannot predict

and understand human behavior, you will not be able to

manage it [2]. Although assessments have been used in

employment settings for over a century [3], recent tech-

nological advancements have provided a range of novel

tools for evaluating employee behavior [4], and their

growing adoption suggests that they have the potential
www.sciencedirect.com 
to make talent management practices less intuitive, and

more evidence-based [5]. This trend is just beginning, is

inevitable, and will supplant existing methods. However,

most of these emerging methods have yet to be rigorously

scrutinized by scientific research [6]. As a recent review

indicated, the overarching field of talent analytics is still in

its infancy, with only 16% of organizations using HR

technologies to link the people side of business to critical

organizational outputs, and perhaps even fewer making

data-driven decisions based on those analytics. As the

reviewers concluded: “despite being a very ‘hot topic’

among HR professionals, a search for peer-reviewed

research in listed scholarly journals reveals a strikingly

small amount of scholarly scientific research [on talent

analytics]” (p.23) [7�].

These conclusions highlight several issues facing HR

leaders and academics. First, HR professionals need

training so that they can use existing psychological assess-

ments correctly. Second, academics must explore the

validity of emerging technologies and practices regarding

big data, technology and human potential. Last, in the

absence of compelling scientific evidence organizational

leaders must resist the hype surrounding big data and the

associated, but unsubstantiated claims promising

increased effectiveness and performance. Solving these

issues is beyond the scope of this article, however we

review three promising innovations within the

‘datafiction of talent’ field to raise awareness regarding

their utility, effectiveness and current limitations. It is

hoped that by doing so organizations will increase the use

of, and benefit from, a data-driven and evidence based

approach to identifying and developing talent.

One of the most promising innovations for evaluating

work-related talent is the deployment of machine-learn-

ing algorithms for translating a person’s digital records,

such as their social media footprint, into a psychological

profile (e.g., personality, cognitive ability and values) [8].

Although ethical and legal constraints have limited the

application of this methodology to employee selection

and screening [9], there is compelling academic evidence

for the validity of digital records as signals of broad

individual differences, and decades of research have

linked those same individual differences to job perfor-

mance, leadership potential, and counterproductive work

behaviors [10]. For example, meta-analytic studies have

shown that the Big Five personality traits account for as

much as 50% of the variability in leadership emergence
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and effectiveness [11], and cognitive ability (which is

largely orthogonal to the Big Five) up to 27% [12]. In turn,

around half of the measurable variability in traditional

measures of the Big Five and cognitive ability have been

shown to be accounted for by digital records, such as the

virtual groups ‘liked’ by Facebook users [13�]. Facebook

data has also been used to infer dark side personality

traits, such as psychopathy (manifested in eccentric and

negative user content), and narcissism (manifested in

self-referential content) [14]. In conjunction with digital

identity claims (i.e., Facebook ‘likes’), individual differ-

ences in online language use [15], such as the type and

frequency of words used on email, Twitter, or Facebook,

are indicative of people’s Big Five personality scores [16],

as well as their core values [17], both of which predict

elevated levels of person-job fit and employee engage-

ment [18].

For digital records to complement traditional psychomet-

ric assessments in the prediction of work-related out-

comes, their incremental validity would have to be dem-

onstrated. Nonetheless, it would be mistaken to assume

that the utility of digital records depends on this. First,

digital records provide more accurate information on

people’s personality than human observers do [19], and

recruiters and hiring managers habitually use social media

to ‘snoop’ on candidates’ profiles and make inferences

about their potential [20]. One study found that nearly

70% of respondents agreed that employers have the right

to check their social networking profile when evaluating

them [21]. Second, digital records offer a scale advantage

that represents a faster and cheaper alternative to tradi-

tional selection methods. This is for two reasons: first they

do not require candidates to complete an assessment,

saving time; second, even if digital tools are no more

predictive of work-related outcomes than traditional tools

are, assessing more candidates can compensate for less

predictive power. Consider an organization that needs to

hire 20 people. Let us further consider that the organiza-

tion uses traditional recruitments methods, such as job

board postings, and gets 100 applicants. Further, the

organization uses traditional selection methods (e.g.,
resumes, personality assessments, references, and inter-

views), with a combined predictive validity of

r = 0.40. Now consider a second organization that also

needs to hire 20 people. This organization ‘recruits’

applicants via public social media profiles (e.g., LinkedIn)

yielding a pool of 100 000 applicants. This organization

uses modern selection methods (e.g., data mining) that

have a predictive validity of only r = 0.20. Despite the

lower predictive validity, the second organization will

actually end up hiring a set of employees who are

0.20 SDs more productive or effective than the first.4

Many organizations do select people at this scale; Amazon
4 An R simulation demonstrating this can be found at: http://www.

rynesherman.com/Selection%20Simulation.R.

Current Opinion in Behavioral Sciences 2017, 18:13–16 
intends to hire 100 000 full time staff in 2017 [22]. In order

to address ethical and legal constrains, as well as anonym-

ity concerns [23], firms intending to use digital tools will

need to allow candidates to opt-in and have control over

their data, grant algorithms permission to assess them, and

decide whether or not to share their psychological profiles

with potential employers or recruiters [6].

The second innovative method for evaluating talent is the

digital interview, whereby ‘computer vision’ is used to

translate interviewees’ vocal and nonverbal behaviors into

a psychological profile or an estimate of their potential fit

for a role (based on the prediction of their future job

performance or employee engagement level) [5]. The

promise of such technologies is the standardization of the

interview process, making it more objective and cost

efficient while reducing the impact of interviewer biases

[24]. The digital interview was born out of the field of

‘social sensing’, the automatic capture and analysis of

interpersonal behavior using consumer grade audio-visual

equipment [25]. Research within this field has found

verbal and nonverbal channels of communication (i.e.,
vocal characteristics, facial expressions & body move-

ments) to be valid predictors of personality traits, often

explaining up to 30% of variance [26–28]. Augmenting

human hiring decisions through automated multimodal

feature extraction (i.e., visual & voice parameters) from

online interviews seems possible and is being trialed in

the lab. For instance, a study led by Laurent Son Nguyen

found that social sensing technology could explain 29% of

the variance in hiring decisions, over and above survey

measures of the Big Five and cognitive ability [29�].
Although this study does not question the wealth of

validity data surrounding psychometric personality and

ability measures, it does demonstrate the potential social

sensing technology has for identifying critical interper-

sonal behaviors that may go otherwise undetected by

traditional recruitment tools.

A final innovation in the field of talent identification is

gamification, which concerns efforts to make assessments

tool more game-like (e.g., engaging, competitive, visually-

appealing, etc.) [30]. Although interactive simulations

have been used as assessment and selection methods

for decades [31], the digital revolution has fueled a

proliferation of game-based assessments. There are many

reasons why HR practitioners and organizational psychol-

ogists should be interested in game-based assessments.

First, significant similarities exist between playing online

role-playing games and the situations in the workplace.

For instance, managing and coordinating virtual ‘clans’ in

World of Warcraft requires the ability to cooperate, build

teams, lead others, and make effective decisions [32].

Second, given that Self-Determination theory (i.e., the

need for autonomy, mastery & relatedness) is predictive

of video game preferences [33], game-based assessments

may improve person-job fit by increasing the likelihood of
www.sciencedirect.com
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employees being placed in jobs that are intrinsically

motivating and engaging [34]. Third, test takers prefer

playing games. Last, there is considerable overlap

between the mental processes needed to win at video

games and those that define cognitive ability [35,36�,37]
suggesting video game-based assessments may offer new

ways to measure psychological attributes critical to

employee talent, such as fluid intelligence [38], integrity

[39] and curiosity [40]. That said, the validity and value of

game-based assessments is still hypothetical, has many

empirical unknowns and requires scrutiny when used for

selection and development. Academics and practitioners

should conduct research so the utility of these tools can be

compellingly demonstrated.

Although we advocate for the benefits accruing from the

datafication of talent, it is also important to consider some

limitations and negative consequences of these novel

approaches to talent identification. As new tools are

developed and begin to be deployed in the workplace,

there are three issues pertaining to the employee-

employer relationship that must be resolved: (a) clear

boundaries around data ownership and sharing must be

established; (b) data privacy and access must be consen-

sual and transparent; and (c) data should be used ethically

and in a non-discriminatory manner. Although regulatory

bodies have already established best practices regarding

these issues for the use of traditional psychological assess-

ments, much work remains to be done in order to update

these guidelines beyond HR and organization psychol-

ogy, considering the intersectional nature of data,

machine learning & human behavior [41].

To conclude, recent technological developments have

provided new alternatives for evaluating workplace talent

and potential. Although the relative accuracy of these

innovations vis-à-vis traditional selection tools remains to

be evaluated, there is no question that they represent a

more data-driven and evidence-based approach than

human intuition.
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