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Al~rae t - -A computational study is performed in which the predictive capabilities of a range of 
eddy-viscosity and second-moment-closure models are examined by reference to a separated flow behind 
a backward-facing step in an expanding channel. The models include three second-moment-closure 
variants, all being of the 'Launder-Rcece-Rodi' type, two RNG k ~  forms, one combining the RNG 
approach with a non-linear eddy-viscosity formulation, and a low-Re k ~  model. The study demonstrates 
that to achieve a solution similar to that returned by second-moment closure, the RNG formulation needs 
to be implanted into a non-linear eddy-viscosity framework; neither returns, on its own, the correct 
behaviour, not even for mean-flow features. Moreover, relatively minor variations within second-moment 
closure---specifically, such relating to wall-induced effects on turbulence isotropisation and to stress 
diffusion--can significantly alter the overall performance of the closure. All models specifically designed 
to return realistic solutions for normal stresses seriously over-estimate anisotropy. 

1. INTRODUCTION 

Separation, recirculation and reattachment are features encountered in numerous practical 
situations. They occur whenever a fast-flowing fluid is required to bypass an obstacle or whenever 
a confining wall undergoes a rapid change in orientation to form a strongly curved convex surface. 
Recirculation has profound consequences in relation to pressure recovery, pressure drag, wall 
friction and heat-transfer characteristics. It is also a powerful generator of turbulence and hence 
mixing and losses. Separated flows have thus naturally been the subjects of many studies, both 
experimental and computational. 

The objectives pursued in different studies have varied considerably. Frequently, however, the 
general emphasis has been on understanding and capturing the separation process, particularly if 
this occurred on a curved surface, on resolving the structure of the separated shear layer and the 
recirculation zone it envelops, on describing the location of reattachment and the dominant 
processes in the reattachment region, and on understanding and predicting the processes governing 
the flow recovery in the wake region following reattachment. All these issues are sufficiently 
fundamental to be common to the majority of practical as well as idealised laboratory flows, and 
it is on the latter type of flows that studies tended to concentrate, if only because of the availability 
of experimental data suitable for validation. For example, particularly extensive and accurate 
experimental data for backward-facing-step flow have been obtained by Kim et al. [1], Eaton and 
Johnson [2] and Driver and Seegmiller [3]. 

When a flow separates, a curved and highly turbulent free shear layer is formed first. In this layer, 
turbulence anisotropy will not generally be as large as in the boundary layer preceding separation, 
yet this anisotropy can have a much greater influence on mean-flow characteristics than that in 
the parent boundary layer. This is due, principally, to the strong interaction between curvature 
strain and the normal stresses, on the one hand, and the sensitivity of the shear stress to normal 
stress anisotropy, on the other. Specifically, curvature tends to attenuate the shear stress and hence 
the level of fluid entrainment into the shear layer--an interaction which dictates the intensity of 
curvature in the shear layer and hence the reattachment position. Additionally, gradients of normal 
stresses (expressed in terms of directionally invariant components in a fixed frame of reference) 
contribute significantly to momentum transport. As the flow approaches reattachment, it is 
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subjected to severe normal strain, yet this can be shown not to contribute measurably to the 
turbulence-generation process; here too, normal-stress anisotropy plays a crucial role. Apart from 
provoking severe flow curvature, associated with the impingement process, the wall tends to 
attenuate turbulent fluctuations normal to it and to enhance wail-parallel components, the result 
being a particularly high level of normal-stress anisotropy. Finally, within the recirculation zone, 
curvature is high and affects the turbulence structure through the same mechanism identified above 
in relation to the free shear layer following separation. 

The above complex processes--in particular the important role played by anisotropy--has 
provided a powerful argument for using second-moment closure (Reynolds-stress models) for 
resolving separated flows, and this route has been followed vigorously over the past decade by 
several research groups, particularly in the U.K., France, the U.S.A. and Japan. While related 
studies have yielded ample evidence for the predictive superiority of second-moment closure over 
eddy-viscosity models in respect of a significant number of complex flows and flow features, several 
studies have also demonstrated important defects. Thus, specifically for the case of flow behind a 
backward-facing step, studies by Kadja [4], Lin [5], Sebag and Laurence [6], Lasher and Taulbee 
[7] and Obi et al. [8] have highlighted excessive levels of anisotropy, inappropriately low rates of 
wake recovery following reattachment and a physically unrealistic reattachment process as being 
the principal weaknesses of establish second-moment models (Launder et al. [9], Gibson and 
Launder [10]). As regards the last defect, Obi et al. have observed the separation streamline to 
double-up as the flow approaches the wall, reattaching at an angle of opposite sign to that of the 
streamlines in the shear layer remote from the wall. 

While efforts are being made to rectify some of the aforementioned defects--for example, 
through non-linear pressure-strain models (Fu et al. [11]), improved corrective fragments account- 
ing for wall-induced pressure reflections, anisotropy-sensitised forms of the equation governing 
turbulence-energy dissipation and even models for the individual components of the dissipation- 
rate tensor--there is a growing perception that second-moment closure is no panacea to all ills and 
is becoming excessively elaborate for the improvements in performance it aims to achieve. This has 
given impetus in the turbulence-modelling community to the formulation and application of 
formally simpler approaches based, broadly, on rational extensions of two-equation eddy-viscosity 
models. 

The principal constraint inherent in linear eddy-viscosity models is the rigid 'local equilibrium' 
relationship between stresses and strains. Specifically, this linkage does not allow for stress-relax- 
ation effects, and prevents the stress field from responding to vorticity. To overcome these 
limitations, several researchers have proposed anisotropic generalisations of the eddy-viscosity 
concept in conjunction with equations for turbulence energy and dissipation. Although most can 
be cast into a common mathematical form, their theoretical origins and derivations differ greatly. 
For example, the model of Yoshizawa [12] is based on the 'direct interaction approximation' (DIA), 
that of Speziale [13] is derived from continuum mechanical arguments, involving asymptotic 
expansions, and the variant of Rubinstein and Barton [14] arises from the 'renormalisation group' 
(RNG) theory of Yakhot and Orszag [15]. All relate, however, the Reynolds-stresses to mean 
strains by a second-order expression. A third-order low-Reynolds-number extension has recently 
been proposed by Craft et al. [16]. One novel feature of the last-named model is the use of strain 
and vorticity invariants to diminish the role of the turbulent Reynolds number and to suppress 
excessive energy generation through irrotational deformations. 

It is possible to argue that the non-linear k-E models are variants of the well-known algebraic 
stress model (ASM)--a simplified form of the Reynolds-stress-transport model which arises from 
the assumption that the ratio of each Reynolds-stress component to its transport term is isotropic. 
Indeed, this relationship is highlighted in a recent article by Gatski and Speziale [17]. However, 
there are significant differences between the two formulations. One is that the intimate link between 
any stress and its production terms, which is expressed in exact form by the Reynolds-stress 
equations, is not part and parcel of the non-linear eddy-viscosity model. Another is that the 
pressure-strain process is not treated and modelled as a separate physical mechanism on the basis 
of rational considerations linked to energy redistribution and isotropisation. While neither 
approach can be claimed to be 'superior' or 'inferior' relative to the other, it may be said that the 
ASM rests on a stronger fundamental basis which prescribes formally the physical coupling 
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between stresses and strains. This coupling is weaker in the non-linear k ~  model, a fact probably 
responsible for, among other weaknesses, the observed insufficient sensitivity of the stresses to 
swirl-related strains returned by this model. 

Applications of non-linear eddy-viscosity models to separated flows are rare, and their perform- 
ance in general conditions is, therefore, uncertain. Thangam and Speziale [18] have 
applied Speziale's form to a backward-facing-step flow and have demonstrated that the 
model returns a credible representation of anisotropy and a broadly correct reattachment location. 
However, the size of the secondary eddy in the step corner was under-estimated, and there 
were significant discrepancies between measured and computed velocity profiles, perhaps due to the 
dispersion effect of the convective fragments in the 'Oldroyd derivative' which is part of the model. 
Kobayashi and Togashi [19] have applied Yoshizawa's form to a similar geometry and have found 
that model to yield some, but by no means dramatic improvements relative to the linear k ~  model. 

An entirely distinct approach to modelling turbulence has been taken by Yakhot and Orszag [15] 
who, using RNG theory, have essentially derived the k-E model theoretically, without recourse to 
experimental data. The basic linear model does not, however, offer any advantages over the 
established form of Jones and Launder [20], unless combined with a correction to the c-equation 
recently proposed by Yakhot et al. [21]. That correction, not strictly arising from RNG consider- 
ations, is designed to sensitise the E-equation to high rates of strains so as to increase the rate of 
dissipation and thus lower the level of turbulent viscosity. A linear form of the model, as well as a 
non-linear variant in which the linear stress-strain relationship was replaced by Speziale's model 
with the convective fragments in the Oldroyd derivative neglected, have been applied by Yakhot et 

al. to a backward-facing-step flow [21]. While the linear RNG model has been demonstrated to 
return, in general, a better performance than the standard k-~ form, a correct representation of the 
size of the step-corner eddy and the shape of the recirculation zone could only be attained by use of 
Speziale's non-linear stress-strain relationship. Several reported applications of the linear RNG 
model to separated flow suggest that this model returns more extensive separation than that obtained 
from the standard k-E model, but there is considerable uncertainty about the role of Yakhot et al.'s 

high-strain correction to the E-equation in this respect, and the model's capabilities cannot be judged 
as no detailed comparisons with experimental data for velocity and Reynolds stresses were reported. 

The balance of experience derived from all studies suggests that it is important for any turbulence 
model--whatever its origin may be--to capture the disproportionate and inhomogeneous sensitivity 
of the stress components to secondary strains, especially those associated with curvature. In 
addition, any credible model must be able to account for redistribution processes at impinge- 
ment/reattachment points and must be able to represent correctly the very different influence of 
rotational and irrotational strains on the stress fields. Yet another facet which is likely to affect model 
performance is the interaction between viscosity and the turbulence structure near the wall. While at 
very high Reynolds numbers this interaction will not greatly influence gross flow features, the 
sensitivity to this interaction can be expected to be marked as the Reynolds number declines. In 
particular, effects of viscous shear on the reattachment process may influence the size and shape of 
the recirculation zone. 

The present paper aims to contribute to a clarification of the capability of different modelling 
strategies in representing the above interactions. Models investigated include linear and non-linear, 
standard and RNG k ~  variants as well as second-moment closure. Two non-linear k ~  models, 
namely Speziale's and Rubinstein and Barton's formulations, are tested. Two different wall-reflec- 
tion fragments in Gibson and Launder's second-moment closure are examined to identify the origin 
of previously observed deficiencies in the predicted reattachment process. Finally, the authors' own 
low-Reynolds-number k-e model (Lien and Leschziner, [22]) is also examined. 

All above models and variants are applied to the backward-facing-step flow of Driver and 
Seegmiller, which is confined, following separation, by a 6 ° expanding channel. The Reynolds 
number, based on step height and maximum inlet velocity, is 36000. 

In what follows, Section 2 summarises all turbulence models which feature in this study. Section 
3 gives a brief description of the numerical procedure incorporating the models. In Section 4, results 
obtained with nine different turbulence-model variants were examined and compared with 
experimental data to identify the merits and weaknesses of the models. Finally, the outcome of the 
present investigation is summarised in Section 5. 
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2. TURBULENCE MODELS 

2. I. Eddy-viscosity model 

Based on series-expansion arguments, a general and co-ordinate invariant quadratic relationship 
between stresses and strains can be written as: 

/ dui Ouj'~ 
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In the conventional, linear formulation of the eddy-viscosity model, C~, C~2 and C~3 are all zero. 
Two quadratic versions are investigated herein, namely those of Speziale~ [13] and of Rubinstein 
and Barton [14]. These merely differ in respect of the numerical values of the coefficients. In 
Speziale's model, 

(C~,, C~2, C~3) = (0.041, 0.014, -0.014), (3) 

while for Rubinstein and Barton's model, 

(C~t, C~:, C~3) = (0.034, 0.104, -0.014). (4) 

The expanded 2D form of equation (1) in general curvilinear co-ordinates is given in Appendix A. 
If the k ~  modelling framework is used, the eddy viscosity arises as: 

k 2 
v+ = C ~ -  (5) 

£ 

where k and E are determined from the conventional transport equations: 

Ox, = ~ r r k / ~  + Pk -- E (6) 

OX i =--OX i Y " -d" - ' | '~ -~ (c ,  I e k  - -  C,2E) (7) 

with Pk being defined as: 

Pk = - u i uj - -  (8) 
axj 

Different variants of the above model arise from the different approaches to determining the 
coefficients C~,, ak, a<, Cd and Ca. Here, three forms are investigated, namely the high-Re k ~  
model, the high-Re RNG k-¢ model--both operating with log-law-based near-wall practices--and 
the authors' own low-Re k-¢ model. The numerical values or expressions used in the above variants 
for the coefficients are as follows: 

• Jones and Launder's model: 

C~=0.09, a k = l ,  a<=l .3 ,  C<t=1.44, Ca=1 .92  (9) 

"{'The convective derivatives of the mean-velocity gradients are neglected here. 
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• Yakhot et al.'s R N G  model: 

C~ = 0.085, tr, = 0.72, o, = 0.72 

ff(l - ff/4.38) 
Ca = 1.42 1 + f l i t  3 , C,2 = 1.68 

where 

, o.j  
fl = 0.012, r7 = Ske S = ~ ,  Sij 2 \Oxj + -~xJ 

• Lien and Leschziner's model: 

[ {  - exp(-O.O16y*) 1 
C , = 0 . 0 9  ~ j ,  Ok=l ,  0 ,=1 .3  
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Yap's correction [23] 

where y* = yx/~/v ,  R+ = k2/vE and 
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2.2. Second-moment closure 
The transport equations for the Reynolds stresses may be written in the following Cartesian 

tensor form: 

au, u;u; 
Ox---~ = D ~  + Pij + ~ j  -- ~6ijE 
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The conventional pressure-strain term ¢~ij combines Rotta's and the Isotropisation o f  Production 
proposals and related wall-corrections, i.e. 
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Cl = 1.8, C2 =0 .6  (16) 

Two variants of  wall-related pressure-strain fragments are adopted here, one being that normally 
used as part of  Gibson and Launder's model [10], and the other a recent variation of  Craft and 
Launder [24] which avoids the former's inappropriate near-wall enhancement of  isotropisation at 
impingement/reattachment regions. Both forms can be written, collectively, as follows: 

¢~])wall • ~ - -  3- -7-"7  3-"7"7"7 ij = CI (u'kumn, nmrij-- [uiuknjnk--~uyuknink)f 

p ~ ¢~Uk 
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988 F . S .  LIEN and M. A. LESCHZINER 

where n~ is the unit vector component in the x~-direction, and the wall-proximity functionfis taken 
as directly proportional to the wall-normal distance with its coefficient chosen so that f is unity 
in the log-law region. In the above, q~j takes the following alternative forms: 

• Gibson and Launder's model: 

C; =0.5, 

• Craft and Launder's model: 

c~ij Pij - 36ij Pkk 

c~=0, G=0 ,  G=0.18 (18) 

where 

C,l = 1.44, C,2 = 1.92 (21) 

The diffusion of Reynolds-stresses, D ~ ,  and dissipation rate, D,, are conventionally approximated 
by Daly and Harlow's [25] generalise~ gradient diffusion hypothesis (GGDH): 

77--7 3u~ uj~ I" kUkUt --7---7 
D ~  =-~xk ~CS -~ 3x~ J' C~=0.22 (22) 

D,=~-~kk(C , U:U'ox,j  C,=0.18 (23) 

This is one model used in computations to follow. It will be reeognised, however, that this tensorial 
form gives rise, when expanded, to a number of cross-diffusion terms which turn out to be 
numerically destabilising--a problem which becomes particularly serious in 3D situations. This has 
motivated the replacement of equations (22) and (23) by a simplified, isotropic stress-diffusion 
model--a route previously adopted, for example, by Jones and Manners [26] and Lin [5]. 

If attention is focused on a plane homogeneous shear flow, the only non-zero diffusion process 
is normal to the flow. This allows an appropriate isotropic diffusivity to be obtained as: 

k 2 kv ,2 
C ~ , -  - C ~ - - ,  (24) 

O'kE E 

from which the Prandtl number for turbulence energy arises as: 

kC~, (25) 
o k = v,-5C ~ 

With C, = 0.22 and ~ ~ 0.361k, the Prandtl number becomes 0.82. In the calculations to follow, 
the diffusivity for all Reynolds stresses has also been taken as that on the left-hand-side of equation 
(24). Similar arguments apply to a,, and these lead to: 

kC~, 
~, = __ (26) 

uf2C~ 

which here takes the value 1.0. 

~ 2 ~ u j  ,~,j = (u;  u', - ~6 , ,k  ) 

C~=0.5, C~=0.08, C~=0.13, C~=0.10 (19) 

Since the above two variants of ~ a ,  are formulated in terms of Cartesian co-ordinates, it is 
necessary to consider carefully their validity and implementation in a general co-ordinate 
framework. This issue is addressed in Appendix B. 

The transport equation for turbulence-energy dissipation, corresponding to equation (14), is as 
follows: 

U k (. f_ 
&--~ = D, + ~ (0.5C,, ekk - C,2E) (20) 
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2.3. Boundary conditions at wall 

The above second-moment closure is only applicable to high-Re-number flow and requires the 
use of a sub-model covering the semi-viscous near-wall layer. The calculations presented later have 
been obtained with the wall-function approach. This is based on the assumption that the turbulent 
near-wall region is described by the log law. Consistent with this are the following relations: 

k = u~ u~ Ou u, e - ~  = - - ,  Pk = E (27) ay 

where r is the von Karman constant equal to 0.41 and u~ ( = v / ~ )  is the friction velocity. 
For the non-linear k ~  model, the Reynolds stresses in the log-law region can be obtained by 

substituting equation (27) into (A1)-(A4) of Appendix A, yielding: 

/2 /2 ) u =t~-+ -3-C-~ ]-- v =t-j+2C"-C'"~k,-~- .j ~w =~,~f2 c,,+c,,\___ k , - - -  

Hence, Speziale's model gives: 

u '2 = 1.022k, v '2 = 0.411k, 

while for Rubinstein and Barton's model: 

u'2 = 0.990k, v'2 = 0.422k, 

u'v" = x//-~ k 

(28) 

w '2 = 0.567k, -u'v" = 0.300k (29) 

w '2 = 0.588k, - u ' v '  = 0.291k. (30) 

In the case of second-moment closure, the Reynolds stresses obtained with Gibson and Launder's 
wall-reflection terms are: 

u'2 4C~ + 2C~ - 4C~ (72 + 2C~ C~ + 6CI + 6Cj C~ - 6C2 C', 

k 3Cl(Cz + 2C~) 

k 

--  U'/)' 

k 

v ': 2 ( - 1 + C 1 + C 2 - 2 C ~ )  

while for 

k 3(C~ + 2C~) 

W'2 UP2 UP2 
= 2 . . . . . .  0.655 

k k 

= 0.247 

= / 2 ( 1  -- C2 + 1.5C~) ( -  1 + C~ + (?2 - 2C~) 

3(CI + 1.5C~)(Ct +2C~) 

= 1.098 

= 0.255 (31) 

3CI(Ct + 2C;) 

Craft and Launder's alternative: 

u '2 4C1 + 2C~ - 4C1 (72 + 3Ct C~ + 6C; + 6 C  I C~ - 6 C  2 C '  I - 4C'~ C'4 - - =  
k = 1.071 

v '2 2(--1 + CI + ( 7 2 - 3 C ~ - 2 C ~ )  

k 3(CI + 2C~) 

Wr2 UP2 /)t2 
- - = 2  =0.7  
k k k 

= 0.299 

- u ' v '  = x/2(1 -- C2 - 1.5C~) ( -  1 + C, + C2 - 3  - 2C~) 4 C~ 
k- _ _  3(C, + 1.5C;)(C, + 2 C ; )  C; C, + 1.5C; = 0.248 (32) 

The above expressions have been derived by imposing the 'local equilibrium' conditions, equation 
(27), on the source term of  the Reynolds-stress equations, S,T~, in equation (14). The expanded 
2D form of  S ~  in curvilinear coordinates is given in Appendix C. For a curved wall, equations 
(27)-(32), applicable to a wall-oriented coordinate framework, need to be transformed in terms of 
Cartesian components, and these can be specified as boundary conditions for the Reynolds-stress 
equations. 
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In the case of Lien and Leschziner's low-Re k-e model, E at the node nearest to the wall is 
prescribed by: 

0.75P~ 
E = 1 - 0.3 exp( -R2)  ' (33) 

which satisfies the following limiting value of E at the wall: 

lim E = 1.56 vk 
y~O f7 (34) 

3. N U M E R I C A L  SCHEME AND COMPUTATIONAL DETAILS 

The present calculations were performed with a non-orthogonal, collocated, cell-centred 
finite-volume procedure, 'STREAM', recently developed at UMIST by Lien and Leschziner [27]. 
This method adopts the higher-order QUICK approximation (Leonard [28]) and the 
MUSCL/TVD scheme (van Leer [29]) to approximate advective volume-face fluxes, the latter 
applied, in scalar form, principally to the turbulence-model equations, including those of the 
linear/non-linear k-e models and Reynolds-stress closure (Lien and Leschziner [30]). The solution 
is iterated to the steady state by means of a pressure-correction scheme, applicable to both 
incompressible and compressible (transonic) conditions (Lien and Leschziner [31]). 

The numerical grids used to obtain the high-Re-model and low-Re-model solutions contained 
110 x 60 and 110 x 80 grid lines, respectively; the grids are shown in Fig. 1 and also identify the 
geometry of the flow domain. These densities were selected on the basis of grid-independence tests 
with coarser grids. The next coarser levels investigated contained 85 x 45 and 100 x 70 grid lines, 
respectively. It is worth noting that the degree of support offered by the finest grids relative to the 
coarser ones is higher than suggested by the numerical ratios of grid lines, for the finest grids were 
arranged to cover a domain shortened from 32 to 24 step heights, and also because the additional 
transverse lines were arranged so as to give preferential support to the separated flow in the 
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Fig. 1. Step geometry and numerical meshes. 
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vicininty of the step. Results for skin friction, wall pressure and velocity were found to display 
negligible grid-sensitivity for the two sets of grids identified above. 

A solution was assumed to have converged when the sum of absolute cell residuals for mass and 
momentum, normalised by the respective inlet fluxes, fell below 0.1%. To achieve this state with 
the finest grids given above required between 1300 and 2200 iterations, depending on the turbulence 
model used. Execution times varied between 6 and 13 CPU minutes on a one-processor 
CRAY-YMP, the highest level of resource being required by the Reynolds-stress model. 

4. RESULTS AND DISCUSSION 

Results are presented for the nine model combinations identified in Section 2, three involving 
linear k-~ eddy-viscosity forms, three non-linear eddy-viscosity variants and three based on 
Reynolds-stress closure. The combinations are listed below, preceded by identifiers which are used 
in plots and the related discussion: 

• STD k-E--Jones and Launder's model [defined by equation (9)] 
• RNG k-~--Yakhot et al.'s model [defined by equations (10) and (11)] 
• LL k-E--Lien and Leschziner's model [defined by equations (12) and 03)] 
• N-L k-e/S--Speziale's model [defined by equation (3)] 
• N-L RNG k -E /S - - -combin ing  Speziale's and Yakhot et al.'s models [defined by equations (3), 

(10) and (11)] 
• N-L RNG k-E/RB--combining Rubinstein and Barton's and Yakhot et al.'s models [defined 

by equations (4), (10) and (11)] 
• RSTM-DH/¢~--s tandard  Gibson and Launder's model [defined by equation (18)] 
• R S T M - D H / ~ - - G i b s o n  and Launder's model combined with Craft and Launder's wall- 

reflection term [defined by equation (19)] 
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• RSTM-ED/¢,.~--Gibson and Launder's model combined with eddy-viscosity diffusion 
[defined by equations (25) and (26)] 

An overall view of the response of gross flow features to turbulence-model variations is conveyed 
in Fig. 2 by stream-function plots of the recirculation zone. The experimental reattachment length, 
based on skin-friction measurements, is 8.2H, and the measured variation of skin friction (to be 
considered later) suggests the existence of a secondary corner eddy of length If/. The worst result 
is returned by the standard k-E model, while closest agreement is achieved with the non-linear RNG 
combination and the Reynolds-stress-transport model incorporating the isotropic stress~liffusion 
approximation. 

Surprisingly, at first sight perhaps, is the sensitive response of the solution to the inclusion of 
low-Re processes. This sensitivity was initially thought to be partially linked to the very high 
resolution of the initial portion of the separated shear layer afforded by the very fine grid placed 
above the horizontal step wall upstream of the point separation. The need for this fine grid arose 
from the application of the low-Re model across the entire flow, including the boundary layer on 
the step wall. Within the present single-block (or single-mesh) approach, this highly dense grid 
extends into the separation region and results in a far higher resolution than that afforded by the 
grid employed in conjunction with wall functions. Some support for this suspicion was derived from 
the observation that the turbulence-energy level generated in the separated shear layer, close to the 
step, differed somewhat from that returned by the high-Re k-E model. To resolve this ambiguity, 
the low-Re model was only applied downstream of the step, while the high-Re form was used 
upstream of the separation point. This application resulted in a solution very close to that included 
here. Hence, the sensitivity observed herein reflects model characteristics and is not contaminated 
by numerical error. More specifically, the sensitivity may reflect differences in the response of the 
respective E-equations to adverse pressure gradient. The present low-Re form was specifically 
constructed with the view to weakening the usual tendency of the E-equation to predict an 
inappropriate rise in the near-wall length scale in boundary layers subjected to adverse pressure 
gradient. This, and the inclusion of the length-scale correction by Yap [23] in the low-Re form, 
enhances a more realistic description of the reattachment process and hence results in an elongation 
of the recirculation bubble. 

Introduction of the RNG k-E form is also seen to yield in a not insignificant elongation of the 
recirculation zone, a result broadly in agreement with observations by others (e.g. Orszag et al. 

[32]). This elongation is due, principally, to the response of C~, to the time-scale parameter 4. The 
value of ~ is preferentially elevated in the shear layer bordering the recirculation zone, thus 
increasing C~. As a consequence, the dissipation rate rises and the turbulent viscosity is reduced. 
While this interaction is clearly beneficial in the present flow, it is found to be detrimental in others. 
Thus, the present authors have found the RNG form to return excessive rates of spread in plane 
and round jets and excessive separation in flow across a staggered tube-bank assembly (Leschziner 
and Launder [33]). 

The inclusion of non-linear terms, defined by equation (1), to the stress-strain relation is 
seen to result in disappointingly small changes to the solution. In particular, the reattachment 
length remains almost unchanged relative to the standard linear k ~  model. The main benefit is 
an enlargement in the secondary corner eddy. Hence, when the non-linear proposal is combined 
with the RNG form--which, on its own, returns little change to the secondary eddy--the result 
is, as expected, a considerable elongation of the primary recirculation region as well as an 
enlargement of the secondary eddy. In fact, close examination reveals the presence of a tertiary 
corner eddy. 

At the most complex level of second-moment closure, the predictive performance is seen to vary 
considerably, depending on the precise closure form used. All versions return a well-developed 
secondary eddy--a consequence of the reduction in turbulence transport, reflecting the ability of 
this type of closure to capture the interaction between curvature strain and the turbulent stresses. 
This interaction would be expected to be effective also in the curved shear layer bordering 
the recirculation zone. As will be demonstrated later, the process manifests itself by a reduction 
in shear stress in the inner portion of this layer, which tends to elongate the recirculation 
zone. However, it is evident from Fig. 2 that the recirculation length is also a sensitive 
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function of the model fragments approximating stress diffusion and wall-induced pressure-strain 
processes. 

As pointed out earlier, the wall-reflection model in the Gibson-Launder closure returns a 
seriously erroneous increase in near-wall shear stress in response to the wall-normal strain 
associated with reattachment. It is this weakness which is responsible for the early reattachment 
observed in Fig. 2. Reversion to Craft and Launder's approximation results in a reattachment 
length in much closer agreement with experimental data. 
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The approximation of stress diffusion is not usually held to be very influential, but provokes a 
strong response in the present case. A closer examination of the stress field has revealed that this 
sensitivity originates, principally, from processes in the reattachment region where gradients of 
stresses vary rapidly. This statement is supported by the observation that the stream-function 
contour closest to the zero line (connecting separation to reattachment) is hardly affected by the 
diffusion model. Hence, the shift in the reattachmcnt point is due to highly localised processes. 

Variations of pressure and skin friction along the lower wall, corresponding to the stream 
function plots of Fig. 2, are shown in Figs 3 and 4, respectively. The former is particularly useful 
in identifying whether the shape of the recirculation region has been correctly captured, while the 
latter helps to identify the location of the primary and secondary eddies, and reflects the predictive 
accuracy of diffusive near-wall processes which are of special relevance in the context of heat 
transfer. Agreement between calculated and experimental pressure variations is seen to be close 
when the Reynolds-stress models and the RNG forms are used. Among these variants, those 
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returning the longest attachment length, in best agreement with the experimental value, also predict 
the best variation of pressure within the range 0 < x < 8H. Beyond reattachment, however, these 
same models are seen to return an insufficient rate of  pressure recovery. This is a direct consequence 
of an insufficient rate of momentum recovery in the wake following reattachment, as will become 
clear later by reference to velocity profiles. 

None of the models returns an entirely satisfactory representation of skin friction, but here too, 
those variants which perform best in relation to the shape of  the recirculation zone also tend to 
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do well in respect of frictional near-wall processes. For example, the standard k-E model and the 
Gibson-Launder stress closure have earlier been observed to give particularly short recirculation 
zones, and these same models also return large discrepancies for skin friction. The latter model is 
seen, however, to capture well the effects of the secondary eddy and to give closer agreement within 
the separated zone as a consequence of the lower level of turbulence transport it returns in response 
to curvature. 

Interestingly, the low-Re formulation predicts a seriously excessive level of (negative) skin 
friction within the separation zone. This might be assumed to indicate a large negative velocity near 
the wall. As will emerge later from a consideration of the velocity field, this is not, in fact, the cause. 
Rather, the main reason is that the state of turbulence in the recirculation zone is very far from 
being in equilibrium, being marked by very high levels of turbulence transport from the 
reattachment region towards the step. The low-Re model allows this high turbulence level to diffuse 
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more readily towards the wall than does the log-law-based treatment, thus reducing the thickness 
of the viscous near-wall layer and increasing the wall shear stress. 

Profiles of streamwise velocity at five locations covering the range 1.5 < x/H < 20 are given in 
Fig. 5. At first sight, all models appear to return very similar distributions, but there are important 
differences as well as common defects. The standard k-E model predicts, consistently with earlier 
observations, a rapid recovery resulting in early reattachment. The main reason is excessive 
diffusion in the curved shear layer bordering the recirculation zone--a defect manifesting itself by 
the insufficient level of shear strain in this area. In contrast, the recovery region appears to be 
represented particularly well by this model, but this is fortuitous and simply due to the premature 
reattachment obscuring a defect common to all models, namely an insufficient rate of momentum 
recover in the wake. Close examination of the profiles predicted by the low-Re model shows this 
variant to return a structure in the separated shear layer which is very similar to that predicted 
by its high-Re counterpart; the main difference lies in the near-wall behaviour, with the former 
model returning later reattachment and slightly higher reverse velocity, particularly close to the 
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reattachment point. All other solutions share two common features: a better resolution of the free 
shear layer bordering the recirculation zone in the initial stages of development, coupled with an 
over-estimation of the shear strain further downstream, particularly in the wake region. There is 
a suggestion, based on the velocity data in wall proximity, that most models predict a delayed 
reattachment, and this brings to light a degree of inconsistency between the experimental variation 
of skin friction and the velocity profiles: the former suggests reattachment at x = 8.2H, while the 
velocity is clearly positive near the wall even at x = 7H. Hence, the assessment of the predictive 
qualities of  any one model relative to others depends On precisely which subset of experimental 
data is judged to be more accurate. 

The differences in the representation of the velocity field must clearly be rooted in variations in 
the predicted Reynolds-stress levels, and this relationship is explored by reference to Figs 6-9 which 
show, respectively, profiles of shear stress, turbulence energy and normal stresses, at the same 
locations as those for velocity. Solutions for shear stress and turbulence energy derived from the 
various models differ mainly within the recirculation zone, especially in the proximity of the step 
in the lower part of the recirculating bubble. Here, the RNG k ~  variants and the Reynolds-stress 
models, particularly the non-standard ones, give the lowest levels of stress and energy, consistent 
with the longest recirculation bubbles. Surprisingly, the low-Re k-E model also returns significantly 
lower values of shear stress at x/H = 1.5. It is reasonable to suppose that the structure of the shear 
layer at this position should depend, principally, on the resolution of the boundary layer on the 
horizontal wall leading up to the step, and that this should, therefore, be largely insensitive to the 
variant ofk-E model used to compute the flow. On the other hand, however, the shear layer----even 
at an early stage of its development--can be expected to respond to processes within the 
recirculation zone, especially to the structure of the secondary eddy nesting in the step corner. As 
seen from Fig. 2, the low-Re model returns a considerably larger secondary eddy than the high-Re 
form, a sensitivity attributable to differences in the predicted response of the dissipation length scale 
to the pressure gradient, both at the reattachment point and at the step corner. Support for the 
argument linking the structure of  the initial portion of  the shear layer to the secondary corner eddy 
is given by the solutions returned by the RNG-modified linear and non-linear eddy-viscosity 
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models. Both variants give a wall-boundary-layer structure which is very close to that arising from 
the standard k-E model, yet both also predict considerably lower shear stress and turbulence energy 
levels in the separated shear layer at x/H --- 1.5. 

A weakness shared by all solutions is that the positions of maximum shear stress and turbulence 
energy are too far away from the wall. With those models returning a broadly correct recirculation 
zone, this is accompanied by a second defect--perhaps indirectly provoking the first--namely an 
insufficient level of near-wall shear stress and turbulence energy. It is especially the latter 
discrepancy which is responsible for the insufficient rate of recovery in the wake and an upward 
shift of the position of maximum shear strain and hence turbulence generation. 

Reference to Figs 8 and 9 reveals that the low level of near-wall shear is accompanied, in the 
case of the Reynolds-stress and non-linear eddy-viscosity models, by a seriously excessive degree 
of normal-stress anisotropy. The Reynolds-stress models return low values of wall-normal intensity 
in the near-wall region, and this causes, through generation, the low level of shear stress. In 
second-moment closure, anisotropy is dictated, principally, by a balance between generation and 
pressure-strain processes. Since the former is represented without formal approximation, defects 
in the predicted anisotropy must be due, mainly, to the latter process, the modelling of which is 
recognised to be very insecure. This is especially so in relation to effects arising from wall-induced 
pressure reflections. The fact that the wall-normal intensity is so low near the wall suggest that the 
present model fragments accounting for wall effects seriously over-estimate the decline of 
isotropisation as the wall is approached. 

The non-linear eddy-viscosity model is seen to return a particularly poor representation of 
anisotropy. Here too, anisotropy is far too high, although the near-wall level of the wall-normal 
intensity is higher than that predicted by the Reynolds-stress closure and is hence closer to the 
experimental data. As the non-linear model embodies no explicit mechanism for wall-induced 
effects, this prominent difference in near-wall behaviour reinforces the earlier conclusion that the 
fragment representing pressure-reflection effects within the Reynolds-stress closure is too dominant. 
The observation that the non-linear model, which is derived along a very different formal route 
to that of second-moment closure, displays similar defects in respect of anisotropy is curious. It 
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is possible that the quadratic nature of the model, in terms of strains---a feature it shares with the 
second-moment variants used here, coupled with the calibration of the m o d e l s  by reference to 
turbulence energy and shear-stress levels for simple shear f lows,  unavoidably introduces c o m m o n  
defects; this is an issue which remains to be examined more closely. 

5. CONCLUSIONS 

The predictive performance of several turbulence-closure proposals has been examined by way 
of comparisons between finite-volume solutions and experimental data for mean-flow quantities 
and Reynolds-stresses in a separated flow behind a backward-facing step followed by an expanding 
channel. The nine model variants investigated combined various fundamentally distinct approaches 
based on the traditional linear stress-strain k-E eddy-viscosity formulation--both for high-Re and 
low-Re flow conditions, second-moment closure, the RNG approach and a non-linear stress-strain 
proposal. 

It must be acknowledged first that the assessment is obscured, to some extent, by inconsistencies 
between wall-distributions of pressure and shear stress, on the one hand, and mean velocity, on 
the other. Specifically, skin-friction data suggest reattachment to occur at x = 8.2H, while the 
velocity profiles imply this location to be closer to x = 7H. 

Based on wall distributions, Reynolds-stress closure, incorporating linear pressure-strain 
proposals, yields close agreement with the measured data only if combined with Craft and 
Launder's wall-reflection model or if Daly and Harlow's generalised-gradient-diffusion hypothesis 
is replaced by an isotropic-diffusion form. All second-moment-closure variants resolve well, in 
contrast to linear k ~  models (including the RNG version), the secondary corner eddy. To achieve 
a similar level of agreement with formulations other than those based on second-moment closure, 
the RNG formulation must be combined with a non-linear eddy-viscosity proposal. 

An unexpected outcome of the study has been a marked sensitivity of the solution to the 
resolution of details in the semi-viscous near-wall layer by use of a low-Re k-~ model. Although 
numerical issues, specifically linked to grid-density differences in the separated shear layer, were 
originally thought to have contributed to this sensitivity, various numerical tests have confirmed 
that the differences in the solutions are rooted in model characteristics, particularly in respect of 
the predicted response of the dissipation length to pressure gradient. 

Those models which perform best in relation to wall-distributions reveal most prominently a 
defect which is, essentially, common to all models, namely an insufficient rate of momentum 
recovery in the wake following reattachment. A related defect is that the location of maximum 
shear strain--and hence shear stress, turbulence energy and streamwise normal stress--is located 
too far away from the lower wall. In the case of second-moment closure, this appears to be due 
to excessive wall-induced damping of the wall-normal intensity, which leads, in turn, to an 
insufficient level of shear stress. 

On the assumption that the experimental data for normal stresses are accurate, it may be stated 
that all models designed to resolve anisotropy return a poor representation of this property. In 
general, all models seriously over-estimate the level of anisotropy, implying fundamental defects 
in the pressure--strain proposals. The second-moment forms tend to return particularly low near- 
wall values, indicating additional defects in the model representing pressure-reflection effects on the 
pressure-strain process. The non-linear eddy-viscosity model is capable of resolving normal-stress 
anisotropy, in principle, but shows weaknesses which are even more serious than those returned 
by second-moment closure. The qualitative similarity between the defects displayed by the two 
modelling approaches, which follow quite different formalistic routes, suggests vaguely that the 
order to which a model relates stresses to strains, however formally effected, is of some significance 
to that model's predictive characteristics, at least in terms of anisotropy. The fact that all models 
are 'calibrated' by reference to simple shear flows, thus favouring close correspondence of the pre- 
dicted shear-stress fields, may act to magnify common defects in the representation of anisotropy. 
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A P P E N D I X  A 

The expanded 2D form of equation (32) in curvilinear coordinates is given below: 

k 3 / D u \  2 /Du '~  2 Du Dv /Dv"~21 
- - - -  C,~) + (2C~1 C~3 + 2C~: + ( 2 C ~  C,I ) ~--~E" 3" "'T~" D " + ~ [  (c, ' + 2 C,1 + D x  t ~  ) - - t ~  ) ~ I (A,) 



where 
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k 3 
v-~f~k 2 v , ~  v +3-~i~[(C.1+2C.2+ /Du~I [D~'~2 2 DuDv 

( Du D r \  k ~ Du Dv Du Dv 
-- + ~ x ) + - ~ ( C . , - C . , ( - ~ x - ~ x + ~ y ~ y  ) (A3) U ~t-'--"~ 

D(/) l O4b 1 
D--~ = ~l (¢,y.  - dp.y{). ~ y = ) ( - @ { x . + ¢ . x , ) .  dp = u. v (A4) 

APPENDIX B 
In order to prove the validity of applying the wall-reflection fragments in O~j in terms of curvilinear coordinates (~, ~), it 
is instructive to introduce the notation of stress transformation as follows: 

[~] = [G]r[x'] [G] (BI) 

[~'] = [G l [ t ] [ c ]  t (B2) 

where the wall-oriented coordinates e~ are related to their Cartesian counterpart ej via: 

e~ = tie I + t2e 2, e~ =n ie  I + n:e2. (B3) 

Then, the matrix [G] is expressed as: 

Taking the slow part of O~jwal', 

w a l l  - -  C '  E 
- ~u~ uknjn k -- [us ukntnk) f ,  (B5) ~j,.iow- i ~ (u',u',.nkn.<$,j 2 , , 3 , , 

as an example, the component i =j = I gives: 

wall __ • ~ - -  t Ol,.aow - Cl ~ [(t~ - 2n~)(v '2) - 3tlni(u'v')']f (B6) 

In recognition of(tl, t2) --- (n2, --n I ) from orthogonality, (v'2) ' and (u'v')' in the above equation can be written by employing 
(B2) as: 

(v'2) ' = n~ u '2 + 2n I n2u'v' + n]v "2, (B7) 

(u'v ')' = n l n2 ( . '2  _ v'2) + (n ] - n ~ )u 'v '. (Bg)  

Substituting (B7) and (Bg) into (B6) in conjunction with the requirement 2 2_ nl + n 2 -  1 for a unit vector, (B6) is further 
simplified to: 

Ow,ll - :' ~ r 2n2~;~ + n~-~ - nln2u'vq.f, (B9) 
II,slow - -  ~ l  k L -  I 

which is exactly the same as the expression expanded with (BS) in term of Cartesian Reynolds-stress components u; u;. 
wall wall Similar proofs can be derived for 0 ~ ,o .  and 0 ~.,ow without any difficulty. Analogous arguments also apply to the rapid 

will p 2 will part of 41 e if it is assumed that ~ / i s  proportional to u~uj -~l~sk. Hence, the Oe of Gibson and Launder s and Craft 
and Launder's variants, when expressed by forms corresponding to equation (17), applies to curved walls. 

The expanded 2D form 

$2~ = 

s,:~= 

APPENDIX C 
of equation (14) for S ~  (=P~j+O~j-{6~/) in curvilinear coordinates is given below: 

k [ - ( e l  + 2C'lf'~)u'--i + C;fyYv'--i - C;fxyu'v'] 

+ (1 - C2)PI, + [~C2 + C'2(fy, - 2f~)]P~ + ] (C i  -- 1)~ 

+c;kr~"(3i:~=.-i..)+~(3i..-D,)+ ~+~ (lfxy.,.,-fxy) 
LxJx 

+ C'4[2~llf.. -- ~vfy, + (2~21 - ~12)f.s] ( e l )  

[ - ( C l  + 2 c ; L , ) v  -~ + c l f ~ -  c'Lf~,u'v] 

+ (1 -- C2)Pz2 + [IC2 + C'2(f. ~ - 2fy,) lP, + ] (C,  - l)~ 

C" k r Dv 3 Du 3 Du Dv + ,  ( : , , , , - f , , )  + ( : . . - f = )  + + 

+ C I  [2#~=fy, - $ , , f . .  + (2#~,2 - $2, ) fx , ]  (C2) 
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where 

E 
s ; ;  = - ~  {[c, + l.sc~ff~x +£,.)]u'v' + I.SC~L,(,'2 + ¢2)} 

+ (I -- C2)Pt2 - 3C~,.yPk 

+ 3C~kV~xf,. .... Dv /Du Dr\  7 

+ 1.5Cff¢,zf,,] + $2,f,.,. + ($,2 ~- ~,2) f v l  

Z~=ntn,f  Z~,=n2nzf f~y=n,nzf 

L~.,. = " I f  £ . ,  = "~ f  

f~yx.,.=nln2n~f Lm.=n,n2n~ c fxyxy=(n,n2)2f 
k3/2/~ 

f = - -  2.45An 
and Dep/Dx and Ddp/Dy are defined in (A4). 

(c3) 

(C4) 


